

Joint Modeling of (Un)bounded Longitudinal Markers, Competing Risks, and Recurrent Events in Cystic Fibrosis Data International Society for Clinical Biostatistics

Eleni-Rosalina Andrinopoulou

PM Afonso, D Rizopoulos, AK Palipana, E Gecili, C Brokamp, JP Clancy, RD Szczesniak

July, 2024

Introduction

Cystic Fibrosis

- \rightarrow Genetic disorder affecting the lungs, pancreas, and other organs
- \rightarrow 40,000 children and adults living with CF in the US
- ightarrow > 75 percent of people with CF are diagnosed by age 2

SURVIVAL

Survival statistics for the years 2015 through 2019.

What to expect?

- \rightarrow Chronic respiratory problems \rightarrow lung infections
- ightarrow Poor growth ightarrow low weight
- \rightarrow Increased risk of death and lung transplantation

What to expect?

- $\boldsymbol{\rightarrow}$ Chronic respiratory problems \rightarrow lung infections
- ightarrow Poor growth ightarrow low weight
- $\boldsymbol{\rightarrow}$ Increased risk of death and lung transplantation

US Cystic Fibrosis Registry

- ◊ Baseline characteristics: Sex, F508del, SESlow, Enzymes
- ♦ Biomarkers: Lung function decline (ppFEV₁)
- ◊ Nutritional status: BMI
- ♦ Survival: Pulmonary exacerbations, death or lung transplantation

What to expect?

- $\textbf{\rightarrow}$ Chronic respiratory problems \rightarrow lung infections
- ightarrow Poor growth ightarrow low weight
- → Increased risk of death and lung transplantation

Incorporating all information could improve decisions regarding the monitoring and treatment strategies of the patients

Introduction: Research question

- \rightarrow How ppFEV₁ and BMI relate to the risk of recurrent pulmonary exacerbations?
- \rightarrow How ppFEV₁ and BMI relate to the competing risks of death and transplantation?
- → Are pulmonary exacerbations related to the competing risk of death and transplantation?

This research is supported by the National Institutes of Health / National Heart, Lung and Blood Institute (grant R01 HL141286)

Introduction: Descriptive statistics

US Cystic Fibrosis Registry

- \rightarrow >23,000 patients
- \rightarrow >1,400,000 observations
- ightarrow on average > 10 years of follow-up
- \rightarrow 11% lung transplantation
- → 18% died

Introduction: Descriptive statistics

Introduction: Descriptive statistics

Introduction: Challenges

- → High-dimensional data
- → Complex data
 - ♦ Multiple longitudinal outcomes
 - ◊ Competing risks
 - \diamond Recurrent events

Introduction: Challenges

- → High-dimensional data
- → Complex data
 - ♦ Multiple longitudinal outcomes
 - ♦ Bounded biomarkers
 - ♦ Competing risks
 - \diamond Recurrent events

Introduction: Challenges

Methods

Common practice

- → Separate/simplified analysis
 - \diamond FEV₁
 - ♦ BMI
 - ◇ Time-to-first exacerbation

Andrinopoulou, E. R., Clancy, J. P., & Szczesniak, R. D. Multivariate joint modeling to identify markers of growth and lung function decline that predict cystic fibrosis pulmonary exacerbation onset. BMC pulmonary medicine. 20. 1-

Incorporating all information could improve decisions regarding the monitoring and treatment strategies of the patients

Methods: Joint Models Longitudinal submodels

→ BMI

 $g_j[E\{Y_{ji}(t) \mid \boldsymbol{b_{ji}}\}] = \boldsymbol{x}_{ji}^{\top}(t)\beta_j + \boldsymbol{z}_{ji}^{\top}(t)\boldsymbol{b_{ji}} = \eta_{ji}(t),$

Methods: Joint Models Longitudinal submodels

- \rightarrow ppFEV₁
- → BMI

 $g_j[E\{Y_{ji}(t) \mid \boldsymbol{b_{ji}}\}] = \boldsymbol{x}_{ji}^\top(t)\beta_j + \boldsymbol{z}_{ji}^\top(t)\boldsymbol{b_{ji}} = \eta_{ji}(t),$ where

- $\diamond~ \pmb{x}_{ji}^{\top}(t)\beta_{j}$ fixed effects
- $\diamond \ oldsymbol{z}_{ji}^{ op}(t)oldsymbol{b_{ji}}$ random effects
- $\diamond \ g_j[.] \ {\rm link} \ {\rm function}$

Methods: Joint Models Longitudinal submodels

- \rightarrow ppFEV₁
- → BMI

$$g_j[E\{Y_{ji}(t) \mid \boldsymbol{b_{ji}}\}] = \boldsymbol{x}_{ji}^\top(t)\beta_j + \boldsymbol{z}_{ji}^\top(t)\boldsymbol{b_{ji}} = \eta_{ji}(t),$$
 where

- $\diamond \ oldsymbol{x}_{ji}^{ op}(t)eta_j$ fixed effects
- $\diamond~ \boldsymbol{z}_{\boldsymbol{j}\boldsymbol{i}}^{\top}(t) \boldsymbol{b}_{\boldsymbol{j}\boldsymbol{i}}$ random effects
- $\diamond \ g_j[.] \ {\rm link} \ {\rm function}$

identity for the unbounded outcome

logit for the bounded outcome

Survival submodels

→ Recurrent event times

$$h_{i}^{R}(t) = h_{0}^{R}(t - t_{0_{li}}) \exp\left[\boldsymbol{w}_{i}^{R^{\top}}(t)\boldsymbol{\gamma}^{R} + \sum_{j=1}^{J}\sum_{m=1}^{M_{j}}H_{jm}^{R}\{\eta_{ji}(t)\}\alpha_{jm}^{R} + \upsilon_{i}^{R}\right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp\left[\boldsymbol{w_{i}^{C}}^{\top}(t)\boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J}\sum_{m=1}^{M_{j}}H_{kjm}^{C}\{\eta_{ji}(t)\}\alpha_{kjm}^{C} + \upsilon_{ki}^{C}\right]$$

Survival submodel

→ Recurrent event times $h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[\boldsymbol{w}_i^{\boldsymbol{R}^{\top}}(t)\boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\alpha_{jm}^R + v_i^R\right]$

• Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp\left[\boldsymbol{w_{i}^{C}}^{\top}(t)\boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J}\sum_{m=1}^{M_{j}}H_{kjm}^{C}\{\eta_{ji}(t)\}\boldsymbol{\alpha}_{kjm}^{C} + \boldsymbol{\omega}_{kjm}^{C} \right]$$

where

◇ h^R₀(t - t<sub>0_{li}) baseline hazard
 ◇ t_{0_{li}} starting time of the risk interval for the *l*th recurrent event
</sub>

Survival submodel

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[w_i^{R^{\top}}(t)\gamma^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\alpha_{jm}^R + v_i^R\right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp\left[\boldsymbol{w_{i}^{C}}^{\top}(t)\boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J}\sum_{m=1}^{M_{j}}H_{kjm}^{C}\{\eta_{ji}(t)\}\boldsymbol{\alpha}_{kjm}^{C} + \boldsymbol{v}_{ki}^{C}\right]$$

where

♦
$$w_i^{R^{\top}}(t)$$
 baseline or time-varying covariates
♦ γ^R regression coefficients

Survival submodel

- → Recurrent event times $h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[\boldsymbol{w}_i^{\boldsymbol{R}^{\top}}(t)\boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\alpha_{jm}^R + v_i^R\right]$
- → Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp\left[\boldsymbol{w_{i}^{C}}^{\top}(t)\boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J}\sum_{m=1}^{M_{j}}H_{kjm}^{C}\{\eta_{ji}(t)\}\alpha_{kjm}^{C} + v_{ki}^{C}\right]$$

where

♦ $H^R_{jm}\{\eta_{ji}(t)\}$ functional forms of the longitudinal outcomes ♦ α^R_{jm} association between longitudinal and recurrent events

Survival submodel

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0_{l_i}}) \exp\left[\boldsymbol{w}_i^{\boldsymbol{R}^{\top}}(t)\gamma^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\alpha_{jm}^R + \upsilon_i^R\right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp\left[\boldsymbol{w_{i}^{C}}^{\top}(t)\boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J}\sum_{m=1}^{M_{j}}H_{kjm}^{C}\{\eta_{ji}(t)\}\alpha_{kjm}^{C} + v_{ki}^{C}\right]$$

where

♦ v_i^R frailty term

Survival submodel

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0_{l_i}}) \exp\left[\boldsymbol{w_i^R}^\top(t)\boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\boldsymbol{\alpha}_{jm}^R + \boldsymbol{v}_i^R\right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp\left[\boldsymbol{w_{i}^{C}}^{\top}(t)\boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J}\sum_{m=1}^{M_{j}}H_{kjm}^{C}\{\eta_{ji}(t)\}\alpha_{kjm}^{C} + v_{ki}^{C}\right]$$

where

$$\diamond$$
 $h_{0k}^C(t)$ cause-specific baseline hazard

Survival submodel

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[\boldsymbol{w_i^R}^\top(t)\boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\boldsymbol{\alpha}_{jm}^R + \boldsymbol{v}_i^R\right]$$

→ Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp\left[w_{i}^{C^{\top}}(t)\gamma_{k}^{C} + \sum_{j=1}^{J}\sum_{m=1}^{M_{j}}H_{kjm}^{C}\{\eta_{ji}(t)\}\alpha_{kjm}^{C} + v_{ki}^{C}\right]$$

where

♦
$$w_i^{C^{\top}}(t)$$
 baseline or time-varying covariates
♦ $\gamma_k^{\ C}$ regression coefficients

Survival submodel

- → Recurrent event times $h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[\boldsymbol{w_i^R}^\top(t)\boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\boldsymbol{\alpha}_{jm}^R + \boldsymbol{v}_i^R\right]$
- → Competing risks

$$h_{ki}^C(t) = h_{0k}^C(t) \exp\left[\boldsymbol{w_i^C}^{\top}(t)\boldsymbol{\gamma}_k^C + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{kjm}^C\{\eta_{ji}(t)\}\boldsymbol{\alpha}_{kjm}^C + \boldsymbol{v_{ki}^C}\right]$$

where

♦ H^{C}_{kjm} { $\eta_{ji}(t)$ } functional forms of the longitudinal outcomes ♦ α^{C}_{kjm} association between longitudinal and the competing events

Survival submodel

→ Recurrent event times

$$h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[\boldsymbol{w}_i^{\boldsymbol{R}^{\top}}(t)\boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R\{\eta_{ji}(t)\}\boldsymbol{\alpha}_{jm}^R + \boldsymbol{v}_i^R\right]$$

→ Competing risks

$$h_{ki}^C(t) = h_{0k}^C(t) \exp\left[\boldsymbol{w_i^C}^{\top}(t)\boldsymbol{\gamma}_k^C + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{kjm}^C\{\eta_{ji}(t)\}\boldsymbol{\alpha}_{kjm}^C + \boldsymbol{\upsilon}_{ki}^C\right]$$

where

Challenges and opportunities: association $g_j[E\{Y_{ji}(t) \mid b_{ji}\}] = \mathbf{x}_{ji}^{\top}(t)\beta_j + \mathbf{z}_{ji}(t)^{\top}\mathbf{b}_{ji} = \eta_{ji}(t)$

When $g_j[.] \neq \text{identity function}$

 $\diamond \ g^{-1}\{\eta_{ji}(t)\}$

 $\diamond~$ Beta: logit link \rightarrow expit function

Challenges and opportunities: association $g_j[E\{Y_{ji}(t) \mid b_{ji}\}] = \mathbf{x}_{ji}^{\top}(t)\beta_j + \mathbf{z}_{ji}(t)^{\top}\mathbf{b}_{ji} = \eta_{ji}(t)$

- When $g_j[.] \neq \text{identity function}$
 - $\diamond \ g^{-1}\{\eta_{ji}(t)\}$
 - $\diamond~$ Beta: logit link \rightarrow expit function
 - → Recurrent event times $h_i^R(t) = h_0^R(t - t_{0_{li}}) \exp\left[\boldsymbol{w_i^R}^\top(t)\boldsymbol{\gamma}^R + \sum_{j=1}^J \sum_{m=1}^{M_j} H_{jm}^R[\boldsymbol{g_j^{-1}}\{\eta_{ji}(t)\}]\boldsymbol{\alpha}_{jm}^R + \boldsymbol{v}_i^R\right]$
 - → Competing risks

$$h_{ki}^{C}(t) = h_{0k}^{C}(t) \exp\left[\boldsymbol{w_{i}^{C}}^{\top}(t)\boldsymbol{\gamma}_{k}^{C} + \sum_{j=1}^{J}\sum_{m=1}^{M_{j}}H_{kjm}^{C}[\boldsymbol{g_{j}^{-1}}\{\eta_{ji}(t)\}]\alpha_{kjm}^{C} + \boldsymbol{v_{ki}^{C}}\right]$$

Challenges and opportunities: recurrent event time

$$h_{i}^{R}(t) = h_{0}^{R}(t - t_{0_{li}}) \exp\left[w_{i}^{R^{\top}}(t)\gamma^{R} + \sum_{i=1}^{J}\sum_{m=1}^{M_{j}}H_{jm}^{R}\{\eta_{ji}(t)\}\alpha_{jm}^{R} + v_{i}^{R}\right]$$

Calendar vs gap time

- → the calendar timescale uses a shared reference time for all events (e.g., study entry), $t_{0_{li}} = 0$
- → the gap timescale uses the end of the previous event, assuming a renewal after each event and resetting the time to zero
- $\boldsymbol{\rightarrow}$ non-risk periods in which a patient is still experiencing the previous event

Application

Application: CF

Model specification

$\rightarrow ppFEV_1$

- \diamond sex, birth cohort, genotype, enthicity
- $\diamond\,$ percentage of green space, average annual truck, deprivation index

→ BMI

- \diamond sex, birth cohort, genotype, enthicity
- $\diamond~$ deprivation index
- $\diamond~$ enzyme intake

Application: CF

Model specification

- → Recurent event
 - $\diamond~$ number of previous PEx events
 - $\diamond~\text{ppFEV}_1\text{'s}$ value, standardized cumulative effect of BMI's underlying value
 - $\diamond~$ gap time scale
- → Lung transplantation/death
 - \diamond sex, birth cohort, genotype, enthicity
 - $\diamond~ppFEV_1$ value and rate of change, standardized cumulative effect of BMI's underlying value

Application: CF Results: longitudinal outcomes

Application: CF

Results: association parameters

	PEx	Transplantation	Death
	-3.8%	-17%	-11.6%
1-unit ppFEV $_1$ value (\uparrow)	(95%Cl -3.9 to -3.8)	(95%Cl -17.5 to 16.5)	(95%Cl -11.8 to -11.3)
1-unit pp FEV_1 slope (\uparrow)		-13.7%	-9.1%
(less steep)	-	(95%Cl -16.1 to -10.9)	(95%Cl -10.8 to -7.5)
1-unit BMI area (†)	0.04% (95%Cl 0.037 to 0.042)	6% (95%Cl 4.4 to 7.6)	7.1% (95%Cl 5.4 to 8.7)

Simulation

Simulation: Set-up

→ Simulate

- $\diamond\,$ Beta (bounded outcome): underlying value, transformed in original scale
- ◊ terminal event: baseline covariate

→ Fit

- ♦ Beta (bounded outcome): underlying value, transformed in original scale
- ◊ terminal event: baseline covariate

Simulation: Set-up

→ Simulate

- $\diamond\,$ Beta (bounded outcome): underlying value, transformed in original scale
- ◊ terminal event: baseline covariate

→ Fit

- ♦ Gaussian (unbounded outcome): underlying value
- ◊ terminal event: baseline covariate

Parameters:

	True parameter	Correclty specified model	Misspecified model
	(Beta)	(Beta)	(Gaussian)
β_1	2.00	1.999	0.765
β_2	-1.00	-0.999	-0.119
γ	0.25	0.246	0.214
α	-2.00	-2.066	-7.870

Simulation: Results Convergence:

⊕ www.erandrinopoulou.com ≥ e.andrinopoulou@erasmusmc.nl ≥@ERandrinopoulou

Beta

Conclusion

Erasmus MC University Medical Center Fetterstam

Extended Joint Model

Conclusion

- → multiple (un)bounded longitudinal outcomes
- → recurrent events
 - $\diamond\,$ gap and calendar time scales
- \rightarrow competing risks
- → different functional forms

Conclusion

Extended Joint Model

- → multiple (un)bounded longitudinal outcomes
- → recurrent events
 - ◊ gap and calendar time scales
- → competing risks
- → different functional forms
- → Software: JMbayes2 drizopoulos.github.io/JMbayes2/

More details:

Afonso PM, Rizopoulos D, Palipana AK, Gecili E, Brokamp C, Clancy JP, Szczesniak RD, Andrinopoulou ER. A joint model for (un) bounded longitudinal markers, competing risks, and recurrent events using patient registry data. arXiv preprint arXiv:2405.16492. 2024 May 26.

Thank you for your attention!

p.mirandaafonso@erasmusmc.nl e.andrinopoulou@erasmusmc.nl