Dynamic prediction modelling in hand disorders after stroke using a latent class multivariate mixed model

Eleni-Rosalina Andrinopoulou, Ruud Selles, Rinske Nijland, Carel Meskers, Gerard Ridders, Gert Kwakkel, Dimitris Rizopoulos

International Society for Clinical Biostatistics, 14-18 July, 2019

Clinical Application

©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Clinical Application: Motivation

Data set collected in Amsterdam
\rightarrow Patients followed after stroke

Outcome of interest:
The Action Research Arm Test (ARAT) is a measure used by physical therapists and other health care professionals to assess upper extremity performance

Clinical Application: Data Details

Number of patients:
450
Gender:

Mean age at stroke:
65

Follow-up visits:

Clinical Application: Data Details (cont'd)

©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Clinical Application: Data Details (cont'd)

Clinical Application: Research Question

Guide clinical decision making \rightarrow use complete biomarker information.

Can we utilize all available longitudinal measurements to predict the future ARAT measurements?

GemsTracker

Statistical Analysis

© ©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Statistical Analysis: Data Characteristics

Special feature should be taken into account in longitudinal data
\rightarrow Correlation between measurements obtained from the same patients
\rightarrow Biological variation of the outcome
\rightarrow Unbalanced datasets

Mixed-effects models

Statistical Analysis: Mixed-effects models

Let y_{i} represent the repeated measurements of an outcome for the i-th patient, $i=1, \ldots, n$

$$
\begin{gathered}
y_{i}(t)=x_{i}^{\top}(t) \beta+z_{i}^{\top}(t) b_{i}+\epsilon_{i}(t), \\
b_{i} \sim N(0, D) \\
\epsilon_{i}(t) \sim N\left(0, \sigma_{i}^{2}\right),
\end{gathered}
$$

where
$\diamond x_{i}^{\top}(t) \beta$ denotes the fixed part
$\diamond z_{i}^{\top}(t) b_{i}$ denotes the random part

Statistical Analysis: Challenges

(1) Sub-populations
(2) Time-dependent covariates
©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Statistical Analysis: Sub-populations

Challenge (1)

Statistical Analysis: Sub-populations

Challenge (1)

Latent class models

$$
\begin{aligned}
& y_{i}\left(t \mid c_{i}=g\right)=x_{i}^{\top}(t) \beta_{g}+z_{i}^{\top}(t) b_{i g}+\epsilon_{i}(t) \\
& b_{i g} \sim N\left(0, D_{g}\right) \\
& \epsilon_{i}(t) \sim N\left(0, \sigma_{i}^{2}\right) \\
& \operatorname{Pr}\left(c_{i}=g\right) \sim \operatorname{Dirichlet}\left(A_{c}\right)
\end{aligned}
$$

where
$\diamond x_{i}^{\top}(t) \beta$ denotes the fixed part
$\diamond z_{i}^{\top}(t) b_{i}$ denotes the random part
$\diamond g$ indicates the class

Statistical Analysis: Time-dependent

Challenge (2)

©eRandrinopoulou () https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Statistical Analysis: Time-dependent (cont'd)

Challenge (2)

©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Statistical Analysis: Time-dependent (cont'd)

Challenge (2)

©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Statistical Analysis: Time-dependent (cont'd)

Univariate mixed model

© ©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Statistical Analysis: Time-dependent (cont'd)

Challenge (2)
Multivariate model (k longitudinal outcomes)

$$
\begin{gathered}
h_{k}\left[E\left\{y_{k i}\left(t \mid c_{i}=g\right) \mid b_{k i g}\right\}\right]=x_{k i}^{\top}(t) \beta_{k g}+z_{k i}^{\top}(t) b_{k i g}, \\
b_{i g}=\left(b_{i 1 g}^{\top}, \ldots, b_{i K g}^{\top}\right) \sim N\left(0, D_{g}\right),
\end{gathered}
$$

$\diamond x_{k i}^{\top}(t) \beta_{k g}$ denots the fixed part
$\diamond z_{k i}^{\top}(t) b_{k i g}$ denots the random part
$\diamond h_{k}($.$) denotes the link function and g$ indicates the class

Statistical Analysis: Model Specification - ARAT

Bayesian framework
Fixed Effects
Nonlinear time in days (with 3 knots)
Shoulder abduction
Finger extension
Recombinant tissue plasminogen activator (medication)
Neglect (lack of awareness of the recovering side)

Random Effects

Nonlinear time in days (with 3 knots)

Classes
Two

Statistical Analysis: Model Specification - MIARM,

 MILEG, FMARMBayesian framework
Fixed Effects
Nonlinear time in days (with 3 knots)

Random Effects
Nonlinear time in days (with 3 knots)

Classes
Two

Statistical Analysis: Results

Check the fitting of the model

©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Prediction
© ©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Prediction: ARAT data set

Predictions using the proposed latent class multivariate mixed model

Monte Carlo simulation scheme
\diamond Draw parameters from the MCMC
\diamond Draw $b_{i g}$ from the posterior
\diamond Calculate predictions

Prediction: Results

Prediction: Performance

Assess the performance of the proposed model \rightarrow Important
\diamond Univariate mixed model (1 class)
\diamond Multivariate mixed model (2 classes)

Prediction: Performance (cont'd)

Prediction: Performance (cont'd)

Assess the performance of the proposed model:
\rightarrow Different methods and metrics exist (e.g. Mean absolute error)

Prediction: Performance (cont'd)

\rightarrow Proper scoring rules
\diamond Compare the predictive distribution of the outcome with the observed value

Logarithmic scoring rule

$$
L R=\log \left[f_{y_{\text {pred }}}\left(y_{o b s}\right)\right]
$$

where $f_{y_{\text {pred }}}$ is the predictive density

Prediction: Performance (cont'd)

\rightarrow Proper scoring rules
\diamond Compare the predictive distribution of the outcome with the observed value

Continuous ranked probability score

$$
C R P S=\int\left[P_{y_{\text {pred }}}(x)-P_{y_{o b s}}(x)\right]^{2} d x
$$

where $P_{y_{\text {pred }}}$ and $P_{y_{\text {obs }}}$ are the cumulative disctribution function of the prediction and the observation respectively

Prediction: Performance (cont'd)

\rightarrow Cross-validation
\diamond we split the data into 10 parts
\diamond use 9 for fitting and 1 for predicting
predicting data: use 1 observation to predict the rest

Prediction: Performance (cont'd)

Logarithmic scoring rule

©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Prediction: Performance (cont'd)

Continuous ranked probability score

©ERandrinopoulou ()https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Conclusion

Latent class multivariate mixed model

Future work
\diamond More classes
\diamond Extra outcomes
\diamond Proper scoring rules
©ERandrinopoulou https://github.com/erandrinopoulou eandrinopoulou@erasmusmc.nl

Thank you for your attention!

The slides are available at: https://www.erandrinopoulou.com

