

Estimating Cystic Fibrosis Lung Function Decline: An Empirical Study

Eleni-Rosalina Andrinopoulou, on behalf of the Research Methods of Calculating Lung Function Decline Workgroup committee: Cystic Fibrosis Foundation, Cincinnati Children's Hospital Medical Center and Erasmus MC

North American Cystic Fibrosis Conference, October, 2020

I have no actual or potential conflict of interest in relation to this presentation.

Introduction

Introduction: Data set

US Cystic Fibrosis Foundation Patient Registry (CFFPR) 2003-2016

→ Included: 35,252 patients

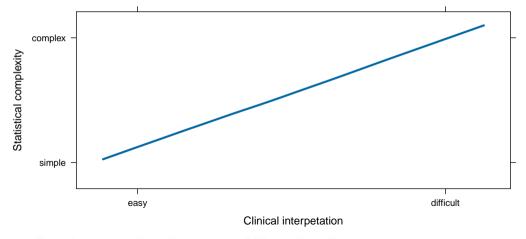
Introduction: Data set

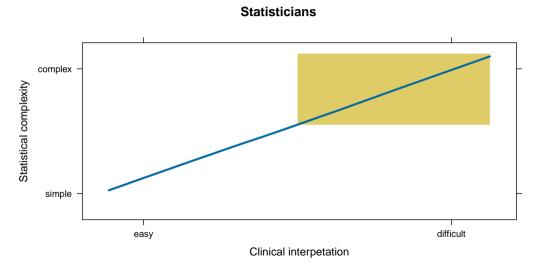
US Cystic Fibrosis Foundation Patient Registry (CFFPR) 2003-2016

→ Included: 35,252 patients

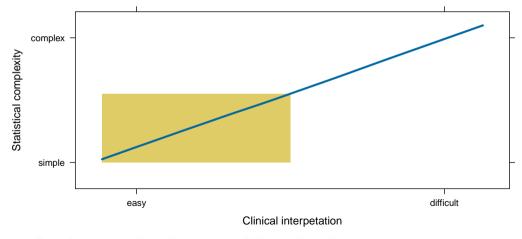
- → Excluded: patients with missing pulmonary function (808 patients)
- → Excluded: aged < 6 years (137 patients)
- → Excluded: lung transplant prior to 2003 (580 patients)

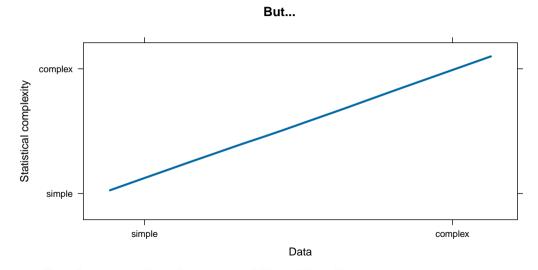
Total of 33,727 patients with 1,276,456

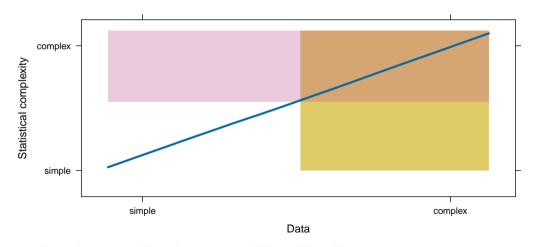

Variability in analytic approaches to model FEV_1 decline


Variability in analytic approaches to model FEV_1 decline

- → Rationale for selected statistical methods
- → Differences between models
- → Differences between scenarios
 - ◊ small sample size
 - ◊ smaller follow-up period







Methods

Characteristics of FEV_1

- \rightarrow Multiple measurements within the same patient
- \rightarrow Unbalanced design
- → Measurement error

Methods: Complex statistical models

- → Mixed effects models (e.g. random effects structure)
- \rightarrow Generalized estimating equation (e.g. correlation structure)
- ightarrow Joint models of longitudinal and survival data

Methods: Keep in mind!

Each data set is unique

→ There is no One Model Fits All Needs solution

Let y_i represent the repeated measurements of an outcome for the i-th patient, $i=1,\ldots,n$

 $y_i(t) = x_i^{\top}(t)\beta + z_i^{\top}(t)b_i + \epsilon_i(t),$

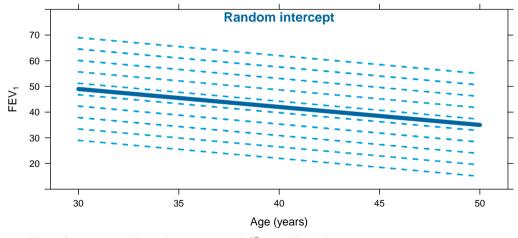
where
$$\begin{split} \epsilon_i(t) &\sim N(0,\sigma^2) \\ b_i &\sim N(0,D) \end{split}$$

Let y_i represent the repeated measurements of an outcome for the i-th patient, $i=1,\ldots,n$

 $y_i(t) = \frac{x_i^{\top}(t)\beta}{x_i^{\top}(t)b_i} + z_i^{\top}(t)b_i + \epsilon_i(t),$

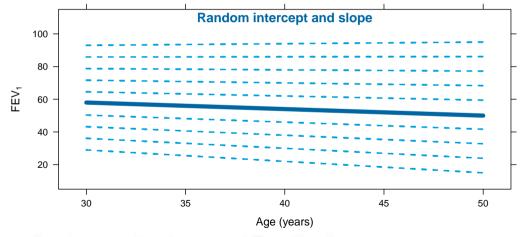
where
$$\begin{split} \epsilon_i(t) &\sim N(0,\sigma^2) \\ b_i &\sim N(0,D) \end{split}$$

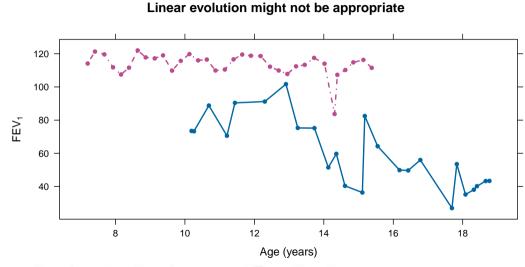
Let y_i represent the repeated measurements of an outcome for the i-th patient, $i=1,\ldots,n$


 $y_i(t) = x_i^{\top}(t)\beta + \frac{z_i^{\top}(t)b_i}{z_i^{\top}(t)b_i} + \epsilon_i(t),$

where
$$\begin{split} \epsilon_i(t) &\sim N(0,\sigma^2) \\ b_i &\sim N(0,D) \end{split}$$

Methods: Mixed models


Linear time

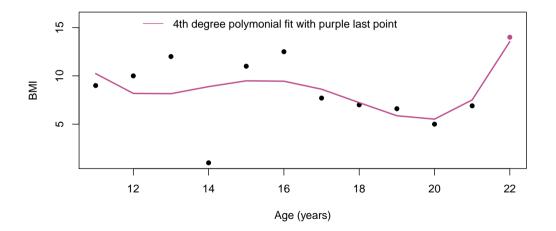

Methods: Mixed models

Linear time

Assume polynomials

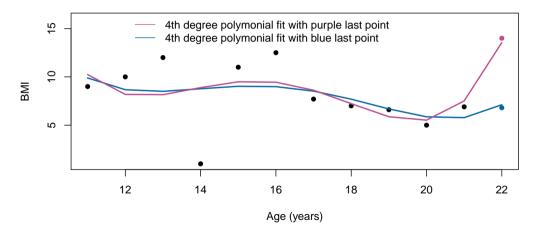
Assume polynomials

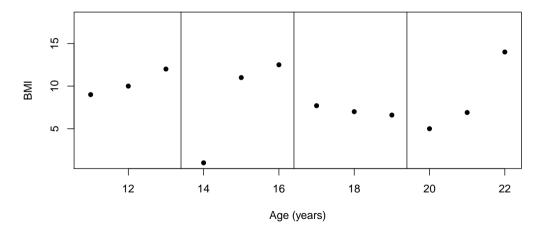
Even better, assume splines!



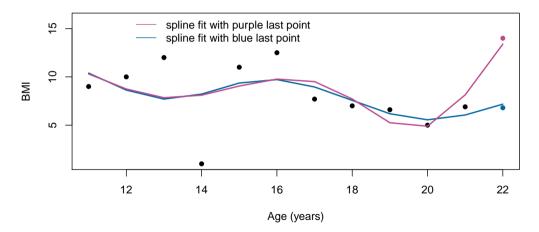
Assume polynomials

Even better, assume splines!


But... Multiple not interpretable coefficients



The two lines are different



Splines: Split the follow-up period in a number of intervals

The two line are similar

Methods: Generalized estimating equation

Let y_i represent the repeated measurements of an outcome for the i-th patient, $i=1,\ldots,n$

 $y_i(t) = x_i^{\top}(t)\beta + \epsilon_i(t),$

where $\epsilon_i(t) \sim N(0, V_i)$

 \rightarrow exponential covariance pattern for V_i

Methods: Mixed models with corr structure

Let y_i represent the repeated measurements of an outcome for the i-th patient, $i=1,\ldots,n$

$$y_i(t) = x_i(t)\beta + b_{0i} + \epsilon_i(t),$$

where

 $\epsilon_i(t) \sim N(0, V_i)$ $b_i \sim N(0, D)$

→ exponential covariance pattern for V_i

Taylor-Robinson, D., Whitehead, M., Diderichsen, F., Olesen, H. V., Pressler, T., Smyth, R. L., & Diggle, P. (2012). Understanding the natural progression in FEV1 decline in patients with cystic fibrosis: a longitudinal study. Thorax, 67(10), 860-866.

Other factors might influence the FEV_1 evolution

- \rightarrow Death
- → Transplantation
- → PEx

Model jointly!

Methods: Joint Models

Joint Models for Longitudinal and Time-to-Event Data

→ Step 1: Fit a mixed-effects model

$$y_i(t) = \frac{x_i^{\top}(t)\beta + z_i^{\top}(t)b_i}{m_i(t)} + \epsilon_i(t)$$
$$= \frac{m_i(t)}{m_i(t)} + \epsilon_i(t),$$

where

 $\diamond m_i(t)$: underlying value of longitudinal outcome

Methods: Joint Models

Joint Models for Longitudinal and Time-to-Event Data

→ Step 2: Fit a survival model

 $h_i(t) = h_0(t) \exp[w_i \gamma + \frac{m_i(t)}{\alpha}],$

where

- $\diamond~m_i(t)$ underlying value of longitudinal outcome
- $\diamond~\alpha$ quantifies the strength of the association between the marker and the risk of an event
- $\diamond w_i$ baseline covariates

Methods: Joint Models

Focus:

- \rightarrow On the longitudinal outcome
- \rightarrow On the survival outcome

Methods: Scenarios

Data conditions:

- → Overall CFFPR data
- → Varying the number of patients, e.g. small: center-based 150, medium: national registry, 3000 large: US registry, 30,000).
- → Impact of follow-up on estimating FEV_1 decline, e.g. <2 years, 2-5 years, >5 years
- → FEV_1 collection frequency, e.g. annual maximum, quarterly mean, quarterly maximum, encounter-level
- → Impact of PEx in estimating FEV_1 decline, e.g. include or exclude FEV1 measurements taken during a PEx; include or exclude PEx as a rolling covariate

Methods: Model selection

Within each statistical approach

- → Mixed models → AIC
- \clubsuit Joint models \rightarrow AIC
- \twoheadrightarrow Generalized estimating equations \rightarrow QIC

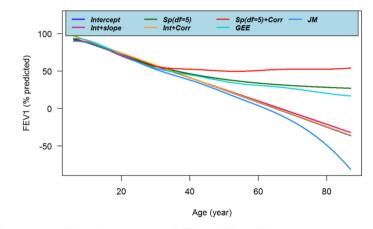
Methods: Model selection

Within each statistical approach

- → Mixed models → AIC
- → Joint models \rightarrow AIC
- \twoheadrightarrow Generalized estimating equations \rightarrow QIC

Between methods

- → Mean Absolute Deviation
- → Root Mean Square Error
- → Correlation


Results

⊕ www.erandrinopoulou.com ≥ eandrinopoulou@erasmusmc.nl ≥@ERandrinopoulou

Results: Evolution over time Using all data

Population-level Evolution

⊕ www.erandrinopoulou.com ≥ eandrinopoulou@erasmusmc.nl ≥@ERandrinopoulou

Results: Within models

Using all data

Linear VS nonlinear:

- \rightarrow All models indicated an approximately linear rate of decline until age 30
- → Nonlinear models fit better than linear models

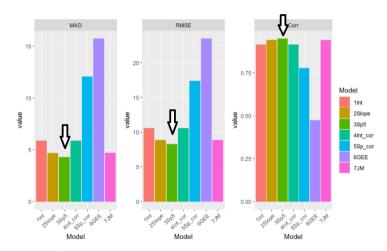
Results: Within models

Using all data

Linear VS nonlinear:

- \rightarrow All models indicated an approximately linear rate of decline until age 30
- → Nonlinear models fit better than linear models

Mixed models - lowest AIC:


- → Random intercept
- → Correlation structure

Results: Between models

Using all data

Not corrected for overoptimism

⊕ www.erandrinopoulou.com ■ eandrinopoulou@erasmusmc.nl ♥@ERandrinopoulou

Results: Between models

Scenarios

Estimated rate of FEV1 decline assuming linear progression

	GEE	LME	JM
Overall Cohort -	-1.26	-1.4	-1.66
Sample n=3000 -	-1.27	-1.41	-1.7
	-1.29	-1.47	-1.84
Sample n=150 -	-1.31	-1.4	-1.66
Quarterly (mean) -	-1.26	-1.36	-1.66
Annual (mean) -	•	•	•
2-5 years -	-1.32	-1.66	-1.72
Below 2 years -	-1.4	-1.39	-1.69
Exclude PEx -	-1.26	-1.36	-1.61
		9 -1.8 -1.5 -1.2 -(Rate of Decline (% Prec	0.9 -1.8 -1.5 -1.2 -0.9 d/Yr)

Model Type • GEE • LME • JM

⊕ www.erandrinopoulou.com ≤ eandrinopoulou@erasmusmc.nl ≤@ERandrinopoulou

Discussion

⊕ www.erandrinopoulou.com ■ eandrinopoulou@erasmusmc.nl ♥@ERandrinopoulou

Discussion

Methods

- \rightarrow Overview of statistical analysis
- \rightarrow Different scenarios

Discussion

Methods

- \rightarrow Overview of statistical analysis
- → Different scenarios

Result highlights

- → Non linear evolution (declines more rapidly at earlier ages)
- \rightarrow Impact were similar across scenarios expect for lenght of f.u. and sample size

Thank you for your attention!

The slides are available at: https://www.erandrinopoulou.com

The presenter is supported by the National Institutes of Health / National Heart, Lung and Blood Institute (grant R01 HL141286)

⊕ www.erandrinopoulou.com ≥ eandrinopoulou@erasmusmc.nl ≥@ERandrinopoulou